Storia terapeutica, resistenza genotipica e fitness virale nelle strategie di semplificazione

Andrea De Luca Dipartimento Biotecnologie Mediche Università di Siena UOC Malattie Infettive AOU Senese

Conflitti di interesse

- Research grants from:
 - ViiV Healthcare
 - Gilead (Fellowship Program)
 - Merck, Sharp and Dohme
- Paid consultancies:
 - ViiV Healthcare
 - Gilead Sciences
 - Merck, Sharp and Dohme
 - Janssen
 - Abbvie

Proportion of patients with a VL<=80 copies/mL at 12 months from starting their first ART regimen by calendar

June 2017

Devono quindi essere accuratamente valutati, bilanciati e discussi i potenziali rischi e i benefici di schemi personalizzati di trattamento, modulati sulla base delle preferenze e delle esigenze cliniche del singolo paziente.

Le principali ragioni che possono portare alla scelta dell'ottimizzazione sono:

- Intolleranza al regime in atto (effetti indesiderati, documentata tossicità);
- Regime in atto che possa aggravare comorbosità presenti;
- Prevenzione di tossicità a lungo termine (pre-emptive switch);
- Regime in atto non più raccomandato;
- Interazioni con altri farmaci, inclusa necessità di cura di altre infezioni (TB, HBV, HCV, ecc.);
- Necessità di migliorare l'aderenza del paziente alla terapia.

Abandoning boosted PI at simplification in pretreated patients

SWITCHMRK: An Avoidable Raltegravir Disaster

Somewhat predictably, treatment-experienced patients on stable regimens who switched from lopinavir/r to raltegravir did not fare as well as those who remained on lopinavir/r.

Abandoning boosted PI at simplification in pretreated patients

SWITCHMRK

- Heterogeneous patient enrolment
 - 1/3 receiving first HIV treatment before the study
 - 1/3 had had virological failure on other drug regimens
- Trial designs did not require detailed intensive records about previous treatment to be kept
 - Supplementary data collection and later ad-hoc analyses

Differences in the virological endpoint were fully accounted for in patients with previous therapeutic failures (i. e. previous drug resistance)

ODIS - Proportion of patients experiencing virological failure after switching PIs to RAL

SPIRAL: Switch to RAL Noninferior to Maintaining PI/RTV Regimens

Free of Treatment Failure at Wk 48	}
(ITT. S = F)	

Median duration of virologic suppression before switch: 6.6 yrs

Martinez E, et al. AIDS. 2010;24:1697-1707.

Patients With V	F	RAL (n = 4)		Pl/RTV (n = 6)
Prior VF		1		3
Prior suboptimal	ART	2		3
Prior resistance mutations		1		5
Resistance test a	at VF	1		4
			2	
Mean Change From Baseline to Wk 48, %	o Switch Continu to RAL PI/RTV		е	<i>P</i> Value
Triglycerides	-22.1	+4.7		< .0001
ТС	-11.2	+1.8		< .0001
LDL-C	-6.5	+3.0		< .001
HDL-C	-3.2	+5.8		< .0001
Total to HDL-C	-4.9	-1.3		< .05

Statement

- 1. La soppressione virologica in pazienti in terapia efficace con regimi a tre farmaci può essere mantenuta con il cambio verso alcuni regimi a due farmaci con i seguenti livelli di raccomandazione:
 - a. DTG + RPV [AI];
 - b. ATV/r + 3TC, DRV/r + 3TC [AI per switch da PI con booster, BI per switch da altri regimi;
 - c. DRV/r + RAL, DRV/r + RPV [CI];
 - d. DTG + 3TC [BII].
- Pur in assenza di studi randomizzati specifici, ma in ragione della equivalenza delle due coformulazioni, si ritiene che sia ATV/r che DRV/r possono essere sostituiti da ATV/c e DRV/c (rispettivamente) [AIII].
- Negli studi di switch a DTG + RPV la non inferiorità in termini di mantenimento della soppressione virologica è dimostrata indipendentemente dal regime triplice di provenienza, mentre nello switch a PI/r + 3TC è dimostrata per lo più in caso di provenienza da regimi basati su PI/r (infatti solo il SALT includeva un 33% di pazienti provenienti da NNRTI).
- 4. I regimi a 2 farmaci hanno in generale documentato una riduzione della tossicità ossea e renale attribuibile a TDF.
- Rispetto alle altre modalità di switch, quello a DTG + RPV consente di evitare sia la tossicità dovuta a PI che le interazioni farmacologiche dovute all'utilizzo di booster.
- 6. Pressoché tutti gli studi di switch a duplice terapia riportano un numero di eventi avversi di grado 3 e 4, nonché di eventi avversi severi, simile a quello rilevato nel braccio di confronto (triplice standard).
- La qualità della vita negli studi di switch a regimi duplici è stata raramente indagata; laddove indagata (negli switch a DTG+RPV), la soddisfazione del paziente e la valutazione dello stato di stato di salute sono risultati simili nei due bracci di terapia [14].
- 8. Per quanto riguarda lo switch verso una duplice terapia con DRV/r (o DRV/c) + RAL, vi è un solo trial randomizzato, ma confrontato con LPV/r e con end-point primario sulla tossicità renale; tale studio non ha documentato alcun beneficio dello switch su eGFR. Tuttavia, va considerato che un importante studio in pazienti naive [18] ha confermato l'efficacia virologica di questa combinazione rispetto al braccio standard (DRV/r+TDF/FTC), ad

At 48w, 4% of patients on DT vs. 3.04% on TT had HIV-RNA ≥50 cop/mL

Difference 0.9% (95%Cl, -1.3% to 3.2%)

Pérez Molina EACS 2017

Only 3 patients developed resistance mutations:

- 1 in DT group (0.19%)
- 2 in TT group (0.38%)

Patient	Clinical Trial	Treatment	Mutation
1	SALT	TT	M184V, L63P
2	DUAL	TT	L10I, A71T, L76W
3	OLE	DT	K103N, M184V

Pooled SWORD 1 & 2: Switching to DTG + RPV vs Continuing INSTI / NNRTI / PI + 2 NRTIs

Study Design and Virological Outcomes at W48

HIV Suppressed Adults HIV-1 RNA <50 c/mL x 12 months Stable ART x 6 months INSTI / NNRTI / PI + 2 NRTIS 1st or 2nd ART with no change due to VF HBV negative M48 W52 W148

Two randomised, multicenter, open-label studies

Primary Endpoint¹

- Non-inferiority established for DTG + RPV vs CAR in virologic suppression (VL < 50 c/mL) at W48 using Snapshot margin of 8% for pooled studies¹
 - Difference (95%CI): -0.2 (-3.0, 2.5)*
- Non-inferiority was also demonstrated regardless of 3rd agent class²

CAR: Continue ART

- * Adjusted for age and baseline 3rd agent
- 1. Llibre JM, et al. CROI 2017; Seattle, WA. Abstract 2421
- 2. Orkin C, et al. EACS 2017. Milan, Italy. Poster BPD 1/5

Pooled SWORD 1 & 2: Switching to DTG + RPV vs Continuing INSTI / NNRTI / PI + 2 NRTIs Risk–Benefit Trade-Offs: Efficacy, Resistance, Safety Profile, Patient Satisfaction

Parameter	DTG+RPV* vs CAR	Week 48 Results DTG + RPV vs continuing Triple ART
Efficacy ¹	Similar	Non-inferiority by VL < 50 c/mL • 95% vs 95%; difference (95%Cl): -0.2 (-3.0, 2.5)
Resistance ¹	Relatively worse	 DTG+RPV: 1 subject had NNRTI resistance (K101K/E)[†] Triple ART: No resistance
Bone Safety ^{1,4,5}	Better	Greater increase in BMD (difference: +1.3 for hip and spine) Reduced bone turnover markers (73% switched from TDF)
Renal Safety ⁴	Similar	 No change in renal tubular markers & eGFR Despite 73% previously on TDF-based regimen
Lipids, Inflammation, & Atherogenesis ⁴	Similar	 No change and no difference between arms Select markers evaluated
Patient Reported Outcomes ⁶	Similar	No difference in symptom bothersome rating and quality of life; very small changes in satisfaction
Neuropsychiatric Adverse Events ¹⁻³	Worse	 Higher rates of neuropsychiatric adverse events DTG+RPV: range 11%-16%; 92% mild-moderate severity Small, numerically higher discontinuations 2% vs 0.2%

* Dosed with food

† Subject resuppressed with continued therapy

1. Llibre JM, et al. CROI 2017; Seattle, WA. Abstract 2421

2. Orkin C, et al. EACS 2017. Milan, Italy. Poster BPD 1/5

3. Walmsley S, et al. ID Week 2017. San Diego, CA. Poster #1382

Orkin C, et al. EACS 2017 . Milan, Italy. BPD 2/10

4.

McComsey G, et al. IAS 2017. Paris, France. TUPDB0205LB 5.

Oglesbey A, et al. EACS 2017. Milan, Italy. Poster BPD 1/2 6.

Impact of M184V on Virologic Efficacy of Switch to 3TC-Based Dual ART

- Retrospective observational study comparing efficacy of 3TC-based dual ART for pts with or without M184V history in Antiretroviral Resistance Cohort Analysis database (N = 436)
 - Inclusion criteria: HIV RNA ≤ 50 copies/mL, switching to dual therapy (3TC + either PI/RTV or INSTI), ≥ 1 prior genotyping
 - M184V determined in historic genotypic resistance tests and last genotyping
 - Primary endpoint: time to virologic failure in M184V-positive vs M184V-negative pts

Dual Therapy Initiated, %	Pts (N = 436)
DRV/RTV + 3TC	36
DTG + 3TC	29
ATV/RTV + 3TC	24
LPV/RTV + 3TC	10
RAL + 3TC	1

Gagliardini R, et al. CROI 2018. Abstract 498.

Slide credit: <u>clinicaloptions.com</u>

M184V and Switch to 3TC-Based Dual ART

	M184V- (n=349)	M184V+ (n=87)	р
lamivudine + RAL	2 (1%)	2 (2%)	
Pre-BL ART:			
2NRTI+PI	176 (50%)	44 (51%)	0.081
2NRTI+INI	26 (7%)	7 (8%)	
2NRTI+NNRTI	45 (13)	3 <mark>(</mark> 3%)	
DT	79 (23%)	23 (26%)	
Other	23 (7%)	10 (12%)	2
Calendar year*	2014 (2013; 2015)	2014 (2012; 2015)	0.121
GSS of the 2 nd drug **	0.99 (0.07)	0.91 (0.20)	<0.001
Major PI resistance mutations***	13 (4%)	30 (34%)	<0.001

Gagliardini R Open Forum Infect Dis 2018

Figure 1a: Estimated probability of being free from virological failure (VF) with dual therapy (M184V groups based on the hGRT)

Gagliardini R Open Forum Infect Dis 2018

M184V and Switch to 3TC-Based Dual ART: Efficacy

- Significantly higher 3-yr probability of remaining free from viral blip[‡] without vs with M184V (log-rank P = .016)
 - M184V: 79.8% (95% CI: 67.8% to 91.8%)
 - No M184V: 90.1% (95% CI: 84.0% to 96.2%)

*VF: 2 HIV-1 RNA findings > 50 c/mL or 1 finding ≥ 200 c/mL. [†]No VF in 21 pts on DTG + 3TC over median f/u of 10 mos. [‡]Viral blip: single HIV-1 RNA finding 51-199 c/mL, not confirmed.

Gagliardini R, et al. CROI 2018. Abstract 498. Reproduced with permission.

M184V and Switch to 3TC-Based Dual ART:

Predictors of VF: GSS of the 2nd drug better predicts VF as M184V Implications for DTG+3TC?

Gagliardini R Open Forum Infect Dis 2018

	Univariate analysis Multivariable analysis 1			e	Multivariable analysis 2		
Variables	HR (95% CI)	p value	aHR (95% CI)	p value	aHR (95% CI)	p value	
M184V in hGRT	1.56 (0.64;3.76)	0.327	1.23 (0.46;3.31)	0.684	1-11 (0.38; 3.23)	0.847	
Type of DT (PI vs INI)	0.42 (0.10;1.85)	0.251					
Age (+ 10 years)	1.17 (0.83;1.65)	0.381			1.11 (0.73; 1.69)	0.625	
Gender (male vs female)	0.66 (0.29;1.50)	0.320			0.61 (0.25; 1.51)	0.284	
Ethnicity (Caucasian vs other)	0.60 (0.14; 2.54)	0.483					
Risk factor (ref. sexual) IDU Other/unknown	2.40 (0.85; 6.75) 1.51 (0.57; 4.02)	0.098 0.411					
HCV infection (ref. absent) present Unknown	1.85 (0.78; 4.37) 0.16 (0.02; 1.19)	0.163 0.073					
HBsAg (ref. negative)							
Positive Unknown	8.85 (2.25; 31.5) 0.50 (0.15; 1.71)	0.001 0.269			12.53 (2.15; 72.9) 1.67 (0.46; 5.96)	0.005 0.437	
Previous AIDS- defining events	1.34 (0.46: 3.93)	0.594					
Duration of virological suppression before baseline (+ 1 year)	0.97 (0.86; 1.16)	0.965	0.95 (0.81;1.1)	0.95	0.92 (0.79;1.08)	0.306	
Baseline CD4+ counts (+100 cells/μl)	0.99 (0.86;1.14)	0.922					
Nadir CD4+ counts (+100 cells/µl)	0.86 (0.64; 1.16)	0.319					
Peak HIV-RNA (+1 log ₁₀ copies/mL)	1.91 (1.06; 3.42)	0.030	1.91 (1.05; 3.49)	0.035	1.61 (0.89; 2.91)	0.116	
GSS of the 2^{nd} drug $(+0.5)$	0.36 (0.16; 0.84)	0.018	0.41 (0.16; 1.03)	0.058	0.41 (0.15;1.19)	0.082	

Antiretroviral resistance selected at failure in HIV+ treated with triple or dual regimens Aim of the study

- To measure resistance selected in patients treated by triple and dual regimen <u>experiencing virologic failure</u>
- 465 patients were studied (> 30 centers in Italy and France)
 - · 300 receiving standard NRTI based triple combinations initiation or switch
 - NRTIs + NNRTI (EFV or RPV) (n=100)
 - NRTIs + INI (RAL or c/EVG or DTG) (n=100)
 - NRTIs + r/PI (r/DRV or r/ATV) (n=100)
 - 165 receiving DTG, RAL or r/PI based dual switch combinations
 - DTG based regiment: DTG + RPV (n=14) ; DTG + 3TC (n= 11); DTG + r/PI (n = 21)
 - RAL based regiment: RAL + r/DRV (n= 55); RAL + ETR (n= 15)
 - r/Pis based regiment: r/PI + 3TC (n= 49)
- None of these patients have failed to drugs of these classes in their therapeutic histories
- Definition of VF was: 2 consecutive VL > 50 copies/ml
- Resistance testing on the second plasma sample

% of cases with resistance at failure by ARV class Triple regimen Dual regimen

Globally more resistance selected by dual regimen in case of virological failure

NNRTI and r/PIs triple combination

- High rate of NNRTI resistance
- Very low rate of PI resistance
- Protection of the NRTI backbone with r/PIs

INIs used in triple combinations:

NRTIS NNRTIS Pis INIS

- No DTG resistance when used in triple combination

- Resistance selected only with RAL (n=2) and c/EVG (n=5) use in triple combination

DTG dual combination with 3TC or RPV

- No DTG resistance

- DTG does not always protect for RPV or 3TC resistance in case of failure

RAL dual combinations

- r/DRV does not protect for RAL resistance

- No cross protection for resistance between RAL and ETR

- DTG does not protect resistance to r/PIs (ATV)

% of cases with resistance at failure

protect for 3TC resistance

Drug resistance and virological rebound with DRV or ATV/r+3TC

ID Patient	HIV-1 subtype	Regimen	Exposure to regimen (days)	Plasma HIV-1 RNA at GRT (log ₁₀ copies/mL)	No. of previous GRTs	No. of previous regimens
GEV- GE03038	CRF01_AE	3TC+ATV/r	343	5.6	1	16
MOV-MO- 0372	В	3TC+ATV/r	1385	2.9	1	11

/r: boosted ritonavir. 3TC: lamivudine. ATV: atazanavir. GRTs: genotypic resitance tests.

ID	Cur	nulative RAMs prior to sv	vitch	RA	RAMs at 3TC+ATV/r failure			
Patient	PI	NRTI	NNRTI	PI	NRTI	NNRT I		
GEV- GE03038	M46I, I54V, L76V, V82F	461, A62V, K65R, K70R, M 54V, V75I, Y115F, F116Y, S188L, I5 76V, V75I, Y115F, F116Y, G190A L7 82F Q151M, M184V V V		M46I, I54V, L76V, V82F	A62V, K65R, K70R, V75I, Y115F, F116Y, Q151M, M184V	Y188L , G190 A		
MOV-MO- 0372	None	M41L, D67N, K70R, T215Y, K219Q	K101E, E138Q, G190A	V32I, M46L, I50L, V82A	M41L, D67N, K70R, M184V , T215Y, K219Q	K101 E, G190 A		

Boldface represent acquired mutations compared to cumulative RAMs prior to switch. /r boosted ritonavir. 3TC: lamivudine. ATV: atazanavir. NNRTI: non-nucleoside reverse transcriptase inhibitor. NRTI: nucleos(t)ide reverse transcriptase inhibitor. PI: protease inhibitor. RAMs: resistance associated mutations.

Di Carlo D, ICAR 2017 (submitted)

Table 1. Patients with DNA/RNA GRT available both before and at DT failure

ID	DNA/RNA GRT BEFORE STARTING DT					FAILING Regimen	HIV-RNA At Failure	A DNA/RNA GRT AT FAILURE E				
	PRIMARY Pi	SECONDARY Pi	NRTI	NNRTI	INSTI			PRIMARY Pi	SECONDARY Pi	NRTI	NNRTI	INSTI
5515	None	None	L74V, M184V	K103N, Y181C	N/A	RPV DTG	354; 1127	None	None	L74V, M184V	K103N, Y181C, H221Y, P225H	G118GR S , E138EA, G140GA, Q148QR
8637	None	None	None	None	None	RPV DTG	5044; 20906	None	None	None	None	None
3536	N/A	N/A	T215Y M184V	N/A	N/A	3TC DTG	65; 107	None	N88ND	M41ML, M184MV, T215CNSY	None	None

Table 3. Patients with DNA/RNA GRT available only at DT failure

ID	FAILING REGIMEN	HIV-RNA AT FAILURE	DNA/RNA GRT AT FAILURE					
			PRIMARY Pi	SECONDARY PI	NRTI	NNRTI	INSTI	
4311	3TC DTG	107720; 583	None	None	None	None	N/A	
5268	3TC DTG	<mark>86;</mark> 190	N/A	N/A	N/A	N/A	None	
2369	3TC DTG	51; 74	None	None	None	E138A	None	
5690	3TC DTG	<mark>52;</mark> 64	None	Q58E	M41L, M184, L210W, T215Y	None	N/A	
3026	3TC DTG	65	None	None	None	None	N/A	

Galizzi N ICAR 2018

ACTG A5353: HIV-1 RNA Levels and DTG Concentration in Pts Experiencing PDVF

Taiwo BO, et al. IAS 2017. Abstract MOAB0107LB. Reproduced with permission.

VF with DTG+3TC (Odoacre)

- 206 patients median follow up of 12.8 months:
- 5 virological failures over 216.5 PYFU (2.3 VF per 100 PYFU).
 - Estimated probabilities of maintaining virological suppression
 - 48 weeks 98.2% (95% CI, 96.0%-100%)
 - 96 weeks 95.1% (95%CI 90.4%-99.8%)
 - − Peak HIV-1 RNA \geq 5x10⁵ copies/mL: 7.8 VF per 100 PYFU:
 - Probabilities of virological suppression in subgroup
 - 48 weeks 95.2% (95%CI 86.2%-100.0%)
 - 96 weeks 86.6% (95%CI 68.4%-100.0%) (vs <5x10⁵ copies/mL p=0.049)
- lack of adherence 2 of 5 cases
- 1 tested: no resistance

Borghetti A HIV Medicine 2018 and unpublished

RESIDUAL ACTIVITY OF 2 NRTIs DESPITE RESISTANCE EARNEST: Second-line LPV/RTV in Patients With Virologic Failure: 144wks follow-up Open label, 14 African sites, all pts failing 2NRTI+NNRTI

ELSEVIER

Paton NI, et al. Lancet HIV. 2017;4:e341-e348.

Considerations

- Consequences of lowering genetic barrier?
- Role of previous resistance in response to PI/DTG+3TC
 - Role of M184V and resistance to the 2nd drug
- Emergence of resistance upon VF with 2DR
 - Resistance to DTG in 2DR very rare (only with RPV or DRV/r: role of previous resistance to the accompanying drugs; one case with 3TC in naive)
 - More than with TT? Role of previous failure and resistance? Residual NRTI activity?
 - What if 2DR only for those without history of VF?